

2-Year

P. G. Department of Physics, University of Kashmir M.Sc. Physics Entrance Syllabus (12 Units)

Unit-I

Coordinate systems including Cartesian, plane polar, cylindrical and spherical; velocity and acceleration in generalized coordinates; dynamics of particle systems and centre of mass; conservation of momentum and angular momentum; motion in central force fields and Kepler's laws; SHM, energy of oscillations and damping; inertial and non-inertial frames, Coriolis force; Lorentz transformations, time dilation, length contraction and relativistic velocity addition.

Unit-II

Vector calculus—gradient, divergence, curl and integral theorems; electrostatic fields and Gauss's law in integral and differential forms; electric field for symmetric charge distributions; electric potential and relation between field and potential; capacitance of parallel-plate, cylindrical and spherical systems; dielectrics, polarization and Gauss's law in dielectrics; energy density in electrostatic fields.

Unit-III

Biot-Savart law and magnetic fields for wire, loop and solenoid; Ampere's law and magnetic vector potential; magnetic intensity, induction, permeability and susceptibility; Faraday's law and Lenz's law, self and mutual inductance and magnetic energy; displacement current and full Maxwell's equations; electromagnetic wave propagation in vacuum and dielectrics; Poynting vector and polarization of EM waves.

Unit-IV

Simple harmonic motion and its differential equation; superposition of harmonic motions, beats and Lissajous figures; transverse waves on strings and normal modes; dispersion, phase and group velocities; coupled oscillators, normal coordinates and normal modes; damped and forced oscillations, resonance and quality factor; Helmholtz resonator and energy transfer in oscillatory systems.

Unit-V

Fermat's principle and paraxial optical approximations; matrix methods in optical systems and cardinal points; interference in thin films, Newton's rings, Michelson and Fabry-Perot interferometers; Fraunhofer diffraction of single, double and N-slits,

resolving power of grating; Fresnel diffraction, half-period zones and zone plates; polarization—plane, circular, elliptical—and basics of holography.

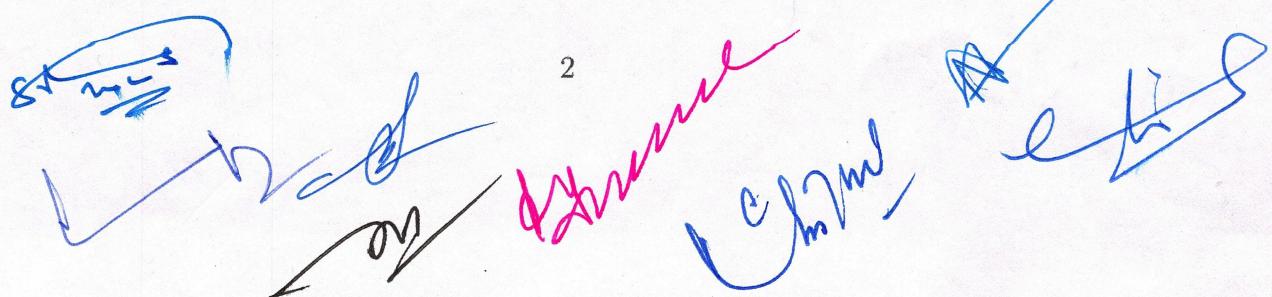
Unit—VI

Coordinate transformations and Jacobians; double and triple integrals and delta function representations; review of vector spaces and rotations in three dimensions; vector integration and integral theorems; curvilinear coordinates and potential theory; vector spaces, inner products and Gram–Schmidt orthogonalization; linear operators, self-adjoint operators and invariants.

Unit—VII

Eigenvalue equations, Hermitian matrices and degeneracy; diagonalization and spectral decomposition; singular and positive-definite matrices; complex functions, Cauchy–Riemann conditions and analytic continuation; contour integration, residues and Cauchy integral formulas; Fourier series and Fourier transforms with properties; Laplace transforms, PDEs, separation of variables and special functions such as Bessel, Legendre, Hermite and Laguerre.

Unit—VIII


Thermodynamic variables and equations of state; first law and work done in different processes; second law, Carnot cycle and entropy changes; Maxwell relations and thermodynamic potentials; Clausius–Clapeyron equation and phase transitions; kinetic theory, Maxwell velocity distribution and transport phenomena; real gases, van der Waals equation, Joule–Thomson effect and cooling mechanisms.

Unit—IX

Degrees of freedom and equipartition theorem; specific heats of gases and behaviour at low temperatures; molecular collisions, mean free path and Brownian motion; blackbody radiation, Stefan–Boltzmann and Wien laws and Planck spectrum; microstates, macrostates and thermodynamic probability; Maxwell–Boltzmann statistics and limitations; Bose–Einstein and Fermi–Dirac distributions and their applications.

Unit—X

Failure of classical physics and emergence of quantum ideas; blackbody radiation, photoelectric effect, Compton effect and Franck–Hertz experiment; de Broglie waves,

wave packets and uncertainty principle; Schrödinger equation, wave functions, operators and expectation values; particle in a box, potential wells and tunneling; atomic structure, spin-orbit coupling, Zeeman effect; rotational and vibrational spectra and Raman effect (classical view).

Unit-XI

Generalized coordinates and constraints; virtual displacement and d'Alembert's principle; Lagrange's equations and Hamiltonian formalism; variational principle and Euler-Lagrange equations; Hamilton's equations, phase space and Liouville theorem; canonical transformations and Poisson brackets; Hamilton-Jacobi method and separation of variables; central force motion and damped/coupled oscillators with normal-mode solutions.

Unit-XII

Band theory of solids and effective mass; PN-junction physics and drift-diffusion currents; characteristics and biasing of JFET and MOSFET devices; rectifiers, filters, regulated power supplies and Zener diode applications; operational amplifiers in linear circuits; LEDs, solar cells and semiconductor lasers; digital electronics including number systems, binary arithmetic, logic gates and basic logic families.

